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Abstract. The lack of training data is an obstacle to build satisfactory
multimodal emotion recognition models. Generative adversarial network
(GAN) has recently shown great successes in generating realistic-like
data. In this paper, we propose a GAN-based data augmentation method
for enhancing the performance of multimodal emotion recognition mod-
els. We adopt conditional Boundary Equilibrium GAN (cBEGAN) to
generate artificial differential entropy features of electroencephalography
signal, eye movement data and their direct concatenations. The main
advantage of cBEGAN is that it can overcome the instability of conven-
tional GAN and has very quick converge speed. We evaluate our pro-
posed method on two multimodal emotion datasets. The experimental
results demonstrate that our proposed method achieves 4.6% and 8.9%
improvements of mean accuracies on classifying three and five emotions,
respectively.

Keywords: EEG · Eye movement · Emotion recognition ·
Generative adversarial network · Data augmentation

1 Introduction

Affective computing [12], which aims to equip machines with the ability to recog-
nize, interpret, process, and simulate human affects, has drawn increasing atten-
tion in recent years. In the framework of affective computing, emotion recogni-
tion is the first critical phase since machines can never process human moods
without precise emotion recognition. Researchers have made great progress in
recognizing emotions from different signals, such as facial expressions, speeches,
and some physiologoical signals including EEG and eye movement signals.
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In recent years, researchers focused on studying multimodal emotion recog-
nition methods to leverage the complementary property among different kinds
of signals. Lu et al. introduced a multimodal emotion recognition framework
for three emotions by combining EEG and eye movement signals [9]. By tak-
ing advantages of the deep neural networks, Liu et al. further improved the
performance of multimodal framework [7]. Zhao et al. also adopted multimodal
framework and extended it for recognizing five emotions [15]. Although these
studies have developed various promising approaches for multimodal emotion
recognition, the performance of emotion recognition models is unsatisfactory
due to the lack of training data.

The popular multimodal emotion datasets contain physiological signals such
as EEG and eye movement signals, which are difficult to collect. The high prices
of EEG and eye movement acquisition devices and the high cost of performing
multimodal emotion experiments limit the scale of the datasets. As a result,
the training set is very small in size in comparison with image dataset such as
ImageNet.

Data augmentation is a promising approach to dealing with the problem
of lack of training data mentioned above. It enlarges the dataset by applying
a transformation to the real data and generating realistic-like data [3]. Lotte
generated artificial EEG data by relevant combinations and distortions of the
original trials [8], and this approach increased the recognition accuracy when the
training set is small. Krell et al. proposed to generate EEG data by rotational
distortions [6]. Wang et al. improved the performance of the emotion recognition
models by adding Gaussian noise to EEG features to generate artificial data [14].
However, the basic idea behind these methods is to generate more data by using
geometric transformation and it is difficult to capture the deep information inside
data.

By taking advantages of deep neural networks and adversarial training, GAN
could learn information about data probability distribution and generate artifi-
cial data from real data distribution. In the field of computer vision, GAN has
demonstrated its ability of generating realistic-like images by playing a zero-sum
non-cooperative game [4,13]. Inspired by GAN, Hartmann et al. proposed EEG-
GAN to generate EEG signals [5]. However, they did not use the generated data
for classification. Luo and Lu generated EEG data in DE feature form by adopt-
ing cWGAN and enlarged the training dataset [10]. Their experimental results
indicated that the accuracies of EEG-based emotion recognition models could
be improved by adding training data generated by cWGAN.

In this paper, we propose a GAN-based data augmentation method for
enhancing the performance of multimodel emotion recognition models. Since the
original GAN suffers from instability and non-convergence problems, we imple-
ment cBEGAN to generate training data [1]. The main advantage of cBEGAN
is that it has quick convergence speed and has an indicator for the training pro-
cess. Meanwhile, we can control the category of the generated data by adding
auxiliary conditional label information [11]. In this paper, we generate EEG sig-
nals and eye movement data in DE (differential entropy) feature form instead of
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raw data, because our previous studies have shown that the DE features of EEG
and eye movement data are more effective for emotion recognition [2,9]. The
multimodal data, which is the direct concatenation of EEG and eye movement
data, are also generated in DE feature form with cBEGAN and cWGAN.

We evaluate our method on three-category and five-category multimodal
emotion datasets. To the best of our knowledge, this is the first research work
regarding GAN-based data augmentation for multimodal emotion recognition.
Our experimental results demonstrate that cBEGAN has a better performance
than cWGAN and significantly improves the accuracies of multimodal emotion
recognition models.

2 Methods

2.1 GAN

A standard GAN consists of two competing parts which are both parameterized
as deep neural networks. A generator G produces synthetic data given a noise
variable input while a discriminator D tries to identify whether a sample comes
from the real data distribution Xr or the generated data distribution Xg. In
other words, the discriminator is trained to estimate the probability of a given
sample coming from the real data distribution. And the generator is optimized
to trick the discriminator to offer a high probability for the generated data.
The two parts are optimized simultaneously to find a Nash equilibrium. More
formally, the procedure can be expressed as a minimax function:

min
θG

max
θD

L(Xr,Xg) = Exr∼Xr
[log(D(xr))] + Ez∼Z [log(1 − D(G(z)))]

= Exr∼Xr
[log(D(xr))] + Exg∼Xg

[log(1 − D(xg))]
(1)

where θg and θd represent the parameters of generator and discriminator, respec-
tively, and Z can be a Uniform noise distribution or a Gaussian noise distribu-
tion.

This function is optimized in two steps; (i) maximize it by fixing G and Xg,
and get the optimum of D; and (ii) minimize the function by the optional D,
and then it equals to minimizing the Jensen-Shannon divergence between Xr

and Xg. The game will achieve equilibrium if and only if Xr = Xg.
Although GAN has shown great successes in realistic data generation, it

suffers from some major problems such as non-convergence, mode collapse and
diminished gradient. Researchers believed that the Jensen-Shannon divergence
could lead to vanishing gradients, which was the main reason of the GAN’s
instability. In real world tasks such as image generation, the distribution of
real images always lies in low dimensional manifolds, and the distribution of
generated images also rests in low dimensional manifolds. The two distributions
are almost certainly disjoint and have no overlaps. In this situation, Jensen-
Shannon divergence between the two distributions is a fixed number, which can
not provide useful gradients for the GAN’s training.
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Fig. 1. Illustration of cBEGAN. cBEGAN adopts the auto-encoder to handle the dif-
ference between two reconstruction losses distributions. Here, G, D, Enc, Dec, Rlr and
Rlg represent generator, discriminator, encoder, decoder and the two reconstruction
losses, respectively.

2.2 cBEGAN

The discriminator in BEGAN adopts an auto-encoder which uses an encoder to
extract the latent features from the input data and applies a decoder to recon-
struct the data from the latent representations as shown in Fig. 1. And now the
discriminator aims to matching the reconstruction loss distribution of real data
and generated data. Berthelot et al. believe that matching auto-encoder loss
could lead to the matching of the data distribution of real data and generated
data directly [1], which is adopted in typical GANs. In other words, the gener-
ated data will have the similar data distribution when their reconstruction loss
distributions are similar. In this way, BEGAN avoids the instability problem of
conventional GAN.

BEGAN chooses Wasserstein distance to measure the difference between the
two reconstruction loss distributions. The Wasserstein distance is also called
Earth Mover’s distance (EM distance). The distance formula for continuous
probability domain is:

W (Xr,Xg) = inf
γ∼Π(Xr,Xg)

E(xr,xg)∼γ [||xr − xg||] (2)

where Π(Xr,Xg) is the set of all possible joint probability distributions between
Xr and Xg. The reconstruction loss is defined as the pixel-wise L1 or L2 distance
between input data and reconstructed data, which can be formulated as:

Lr(x) = |x − D(x)|η (3)

where D is the discriminator (auto-encoder) function, and η ∈ 1, 2, and x can
be a sample of real data distribution or generated data distribution.

Let μrr and μrg be the real and generated reconstruction loss distributions,
respectively, and let mrr,mrg ∈ R be their respective means, and Π(μrr, μrg) is
the set of all possible joint probability distributions between two distributions.
By using Jensens inequality, the formula can be expressed as:

W (μrr, μrg) = inf
γ∼Π(μrr,μrg)

E(xrr,xrg)∼γ [||xrr − xrg||]

≥ inf |E[xrr − xrg]| = |mrr − mrg|
(4)
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so now we are aiming to optimize a lower bound of the Wasserstein distance
between the two reconstruction losses. Then the loss of BEGAN is:

min
θG

max
θD

L(Xr,Xg) = − Exr∼Xr
[(Lr(xr)] + Ez∼Z [Lr(G(z))]

= − Exr∼Xr
[(Lr(xr)] + Exg∼Xg

[Lr(xg)]
(5)

where θG and θD represent the respective parameters of the generator and the
discriminator in BEGAN.

In BEGAN, the discriminator has two goals: auto-encode real data and
discriminate real data from generated ones. In order to maintain the balance
between the generator and discriminator losses, we can apply a hyper-parameter
γ ∈ [0, 1] defined as:

γ =
E[Lr(G(z))]
E[Lr(xr)]

(6)

To maintain the equilibrium E[Lr(G(z))] = γE[Lr(xr)], we use Proportional
Control Theory by adopting an extra variable kt ∈ [0, 1] to control the proportion
of Lr(G(z)) during gradient descent. Similar with cWGAN, we add an extra label
information to control the generated categories. The cBEGAN can be formulated
as:

max
θD

L(Xr,Xg, Yr) =

− Exr∼Xr,yr∼Yr
[(Lr(xr|yr)] + ktExg∼Xg,yr∼Yr

[Lr(xg|yr)]
(7)

min
θG

L(Xg, Yr) = Exg∼Xg,yr∼Yr
[Lr(xg|yr)] (8)

kt+1 = kt + λk(γLr(xr) − L(G(z))) (9)

where Yr is the label distribution. We initialize k0 = 0 and set λk = 0.001, γ =
0.75 in this paper. Now we can define a convergence measure as:

Mglobal = Lr(xr) + |γLr(xr) − Lr(G(z)| (10)

Mglobal can be used as an indicator for the convergence of the network.
In this paper, we also extend cWGAN, used in our previous work [10], to mul-

timodal emotion recognition. For cWGAN and cBEGAN, the losses of generator
and discriminator are optimized in an alternating procedure. The distribution
of the generated data is similar with the real data when the networks converge.

3 Experiment Settings

3.1 EEG Datasets

We evaluate our proposed method on two multimodal emotion datasets SEED
1 [16] and SEED-V.
1 http://bcmi.sjtu.edu.cn/∼seed/index.html.

http://bcmi.sjtu.edu.cn/{~}seed/index.html
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SEED dataset contains 62-channel EEG signals and eye movement signals
of three different emotions (happy, sad, and neutral). The original EEG signals
were recorded at a sampling rate of 1000 Hz with ESI NeuroScan System and the
eye movement signals were collected with SMI ETG eye tracking glass, which
contained information about blink, saccade, fixation and so on. In this dataset, 15
participants watched 15 emotional film clips for 3 times. In this work, 9 subjects’
data (27 experiments) are used because they have completed multimodal data.

SEED-V dataset were also formed with 62-channel EEG signals and eye
movement signals. 16 participants watched 15 emotional film clips to elicit five
emotions: happy, sad, neutral, fear, and disgust. They took part in the experi-
ments for three times, so there were totally 48 experiments. The EEG and eye
movement signals were collected by the same device used in SEED.

3.2 Feature Extraction

We use a band pass filter (1–50 Hz) to eliminate low-frequency noise and high-
frequency noise in the EEG signals. Then we extract DE features by adopting a
4s-length non-overlapping Hanning window for five frequency bands: δ: 1–3 Hz,
θ: 4–7 Hz, α: 8–13 Hz, β: 14–30 Hz, and γ: 31–50 Hz. In order to eliminate the
rapid changes of the DE features, we also adopt a linear dynamic system. Each
EEG sample has 310 dimensions since there are 62 channels for each band.

As for eye movement signals, we extracted the same features as in [9,15]. The
features include blink, saccade, fixation and so on. Notably, each eye movement
sample has 41 dimensions in SEED dataset and it has 33 dimensions in SEED-V
dataset since we simplify the eye movement features in SEED-V.

3.3 Evaluation Details

In order to demonstrate the effectiveness of the proposed method, we conduct
cross validation on both datasets. Since, each experiment of the two datasets has
15 trials, so there are 5 trials for each emotion category in SEED dataset and
3 trails for each emotion category in SEED-V dataset. As for SEED dataset,
we use 5-fold cross validation for each experiment. And as for SEED-V dataset,
we adopt 3-fold cross validation for each experiment to make sure each fold has
5 emotion categories. We normalize both DE and eye movement features by
min-max normalization before feeding them to the networks.

We perform grid search on the number of network layers and hidden nodes
to optimize the network structure of cWGAN and cBEGAN. The numbers of
layers are searched from 2 to 4 for both generator and discriminator. The input
dimension is decided by the dimension of the corresponding input feature and
the dimension of auxiliary label is 3 for SEED and 5 for SEED-V. The output
dimension of cWGAN’s discriminator is 1 while the output dimension is the
same with its input for cBEGAN’s discriminator.

The numbers of hidden nodes for each layer are randomly searched from 50
to 600. For cBEGAN, the hidden nodes of encoder and decoder are the same.
The outputs of the two generators have the same dimension as the input data.
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And ReLU activation function is used for all hidden layers. The batch size is
set to 128. Adam with initial learning rate 0.0001 is used as the optimizer. The
noises are sampled from a uniform distribution U [−1, 1].

As for the classifier, we apply an SVM with linear kernel. The parameter c
is searched from 2−10 ∼ 210 to find the optimal value.

Iteration

      (a)       (b) 
Iteration

Fig. 2. Dloss for cWGAN (a), and Mglobal for cBEGAN (b) tendency along with
training steps of SEED dataset.

4 Experimental Results

To evaluate the performance of the proposed method, we generate different fea-
tures for both datasets. We generate DE features of EEG signals and eye move-
ment data. As for multimodal data augmentation, we directly concatenate DE
features of EEG signals and DE features of eye movement data, and generate
realistic-like multimodal feature from the concatenated features. The number of
the generated features for each emotion category is the same. In this section, we
will first compare the convergence speed between cBEGAN and cWGAN, then
discuss the performance of data augmentation for the two datasets.

4.1 Convergence Performance

As mentioned above, cWGAN and cBEGAN can overcome the instability prob-
lem of conventional GANs and both of them have an indicator for training
procedure. Figure 2(a) shows the convergence curve of cWGAN. Dloss rises to
−2 after 1000 iterations, which indicates the network have a good convergence
performance. Besides, as the Wasserstein distance between real data distribu-
tion and generated data distribution, Dloss converging to a small value means
the two data distributions are similar. As shown in Fig. 2(b), Mglobal decreases
to about 0.6 and also has a stable convergence trend. cBEGAN has a better
convergence performance since it converges after 500 iterations.
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Table 1. Mean accuracies and standard deviations of the models trained on SEED
dataset and appending datasets generated by cBEGAN and cWGAN

No. of appended
training data

EEG Eye movement Multimodal

cWGAN cBEGAN cWGAN cBEGAN cWGAN cBEGAN

0 0.8190 0.8190 0.7715 0.7715 0.8573 0.8573

0.1074 0.1074 0.1327 0.1327 0.0879 0.0879

50 0.8331 0.8423 0.7881 0.7938 0.8606 0.8814

0.1014 0.1020 0.1241 0.1202 0.0864 0.0906

200 0.8392 0.8557 0.7924 0.8043 0.8621 0.8878

0.1028 0.0941 0.1249 0.1262 0.0877 0.0888

600 0.8372 0.8601 0.7956 0.8100 0.8539 0.9021

0.1045 0.0876 0.1225 0.1228 0.0913 0.0858

700 0.8373 0.8641 0.7907 0.8063 0.8589 0.9033

0.1086 0.0894 0.1262 0.1241 0.0883 0.0837

800 0.8377 0.8651 0.7929 0.8093 0.8558 0.9033

0.1084 0.0914 0.1213 0.1139 0.0887 0.0837

2000 0.8338 0.8756 0.7958 0.8160 0.8586 0.9000

0.1030 0.0852 0.1276 0.1042 0.0874 0.0776

4.2 SEED Results

For SEED dataset, the number of samples for each experiment is 842. And we
generate 50, 200, 600, 700, 800, and 2000 artificial samples of the three features
and add them to their respective original training datasets. Table 1 illustrates the
performance at different number of augmented training data. 0 means the model
is trained by original training dataset. As for single modality, cBEGAN achieves
the best mean accuracies of 87.56% and 81.60% when we add 2000 samples
of generated EEG and eye movement data, respectively. For multimodal data
augmentation, cBEGAN reaches the best mean accuracy of 90.33% when adding
700 generated multimodal data.

4.3 SEED-V Results

For each subject, the number of sample for each experiment is 681, 541 and
601 since they watched different movie clips for each time. Considering these
numbers are approximate, we neglect the difference and generate 50, 200, 400,
500, 1000 and 2000 samples of the three data and enlarge their respective original
dataset for each experiment. As shown in Table 2, cBEGAN achieves the best
mean accuracies of 62.87%, 60.19%, and 68.32% when we add 2000, 2000 and
1000 samples to the training datasets of EEG, eye movement and multimodal
data.
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Table 2. Mean accuracies and standard deviations of the models trained on SEED-V
dataset and appending datasets generated by cBEGAN and cWGAN

No. of appended
training data

EEG Eye movement Multimodal

cWGAN cBEGAN cWGAN cBEGAN cWGAN cBEGAN

0 0.5434 0.5434 0.4862 0.4862 0.5946 0.5946

0.1525 0.1525 0.1432 0.1432 0.1603 0.1603

50 0.5793 0.6064 0.5207 0.5533 0.6260 0.6485

0.1534 0.1655 0.1381 0.1388 0.1599 0.1595

100 0.5846 0.6124 0.5336 0.5555 0.6279 0.6568

0.1546 0.1616 0.1345 0.1382 0.1626 0.1559

200 0.5901 0.6181 0.5457 0.5609 0.6294 0.6674

0.1536 0.1592 0.1437 0.1369 0.1594 0.1598

400 0.5946 0.6207 0.5446 0.5816 0.6366 0.6775

0.1580 0.1558 0.1417 0.1434 0.1582 0.1584

500 0.5954 0.6225 0.5349 0.5815 0.6330 0.6810

0.1571 0.1544 0.1400 0.1430 0.1606 0.1548

1000 0.5965 0.6287 0.5486 0.5892 0.6326 0.6832

0.1594 0.1526 0.1456 0.1388 0.1590 0.1549

2000 0.5912 0.6278 0.5518 0.6019 0.6325 0.6831

0.1593 0.1442 0.1470 0.1399 0.1620 0.1504

Compared with cWGAN, cBEGAN has higher accuracies for single and mul-
timodal data augmentation on the two datasets. Besides, cBEGAN also has a bet-
ter convergence performance. By measuring the difference between the two recon-
struction loss distributions instead of two data distributions, cBEGAN can cap-
ture deeper information of the real data distribution than cWGAN, and generate
artificial samples with rich information and diverse distribution, which leads bet-
ter margins for the recognition models. Although cWGAN-based data augmen-
tation has a poorer performance in terms of accuracy than cBEGAN-based data
augmentation, the mean accuracies also has improvements on the two datasets,
which demonstrates the multimodal emotion recognition models are more robust
when adopting the proposed GAN-based data augmentation method.

5 Conclusion and Future Work

In this paper, we have proposed a GAN-based data augmentation method for
improving the accuracy of multimodal emotion recognition models. We have
generated realistic-like EEG, eye movement and their direct concentration data
with cBEGAN and cWGAN. Our experimental results on two multimodal emo-
tion datasets indicate the effectiveness of the proposed method and cBEGAN
achieves the biggest improvements of mean accuracies on classifying three and
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five emotions with a better convergence speed. In the future, we will evaluate
our method on more multimodal emotion recognition tasks and employ recur-
rent neural networks to consider temporal information of EEG and eye movement
signals.
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